Поступательное движение определение примеры. Поступательное и вращательное движение

Механика рассматривает всевозможные движения материальной точки и твердого тела. Все они описываются в нескольких разделах. К примеру, вопрос о том, как они движутся, будет прерогативой кинематики. В ней подробно описывается поступательное движение, а также более сложное - вращательное. Сначала о том, что проще. Потому что без этого сложно переходить к следующим темам.

Какие допущения позволяет механика?

Во многих задачах разрешено вводить приближение. Это связано с тем, что оно не окажет влияния на результат, зато упростит ход рассуждений.

Первое приближение связано с размерами тела. Если рассматриваемое тело существенно меньше других, находящихся с ним в одной системе отсчета, то его размерами пренебрегают. А само тело превращается в материальную точку.

Второе следует из отсутствия деформации у тела во время его перемещения. Или хотя бы настолько ее незначительной величины, которой вполне можно пренебречь.

В чем заключается поступательное движение тела?

Для пояснения потребуется рассмотреть две любые точки внутри твердого тела. Их нужно соединить отрезком. Если этот отрезок во время перемещения остается параллельным начальному положению, то говорят, что это - поступательное движение.

Если наблюдается пренебрежение размерами тела и рассматривается материальная точка, то отрезок отсутствует и она сама перемещается вдоль прямой.

Яркие примеры такого движения

Первое, о чем можно вспомнить — это кабина лифта. Она идеально иллюстрирует поступательное движение тела. Лифт всегда перемещается строго вверх или вниз без какого-либо вращения.

Следующим примером, иллюстрирующим поступательное движение, называют перемещение кабины колеса обозрения. Однако это реально только в ситуации, когда не учитывается небольшой наклон кабинки в начале каждого смещения.

Третья ситуация, когда можно говорить о поступательном движении, связана с движением педалей велосипеда. Их перемещение рассматривается относительно рамы. Здесь опять же вводится допущение, что ступни человека во время езды не качаются.

Завершить список можно перемещением поршней, которые колеблются внутри цилиндров двигателя внутреннего сгорания.

Главные понятия

Кинематика поступательного движения заключается в том, что изучает и описывает перемещение твердых тел и материальных точек. При этом она не рассматривает причины, которые тело к этому принуждают. Чтобы описать движение, потребуются координаты для указания его положения в пространстве. К тому же потребуется знание о скорости, причем в каждый конкретный момент времени.

Сначала стоит вспомнить о траектории. Она является линией, по которой двигалось тело.

Первым требуется ввести перемещение. Оно представляет собой вектор, который обозначается латинской буквой r. Он может соединять начало координат с положением материальной точки. В других случаях этот вектор проводится от начальной до конечной точки траектории. Единицы измерения перемещения — это метры.

Вторая величина, заслуживающая внимания, - путь. Он равен длине траектории, по которой двигалось тело. Обозначается путь буквой латинского алфавита S, которая тоже измеряется в метрах.

Основные формулы

Теперь настало время скорости. Она тоже является вектором. Причем характеризует не только направление движения тела, но и быстроту его перемещения. Вектор скорости всегда направлен вдоль касательной линии, которую можно провести к любой точке траектории. Обозначается она буквой V. Единицы ее измерения — м/с.
Скорость в каждое мгновение движения можно определить как производную перемещения по времени. Если в задаче идет речь о равномерном движении, то справедлива следующая формула:

  • V = S: t, где t — время движения.

В ситуации, когда направление движения изменяется, приходится использовать сумму всех перемещений.

Следующая величина — ускорение. Снова векторная величина, которая направлена в сторону скорости с большим значением. Определяется она как первая производная от скорости по времени. Принятое обозначение — буква «а». Размерность указывается в м/с 2 .

Формулы для каждой составляющей ускорения, направленных вдоль осей, вычисляется как отношение изменения скорости вдоль этой оси к промежутку времени. Если сделать математическую запись, то получится следующее:

  • а х = ∆V х: ∆t.

Для проекций ускорения на другие оси формулы аналогичны.
К тому же при рассмотрении движения по траектории с изгибами существует возможность разложить вектор ускорения на два слагаемых:

  • а = а t + а n , где а t — тангенциальное ускорение, направленное по касательной к изгибу, а n — нормальное, которое указывает на центр искривления.

Поступательное движение любого твердого тела сводится к тому, чтобы описать перемещение только одной его точки. Формулы, которыми нужно пользоваться, такие:

  • S = S 0 + V 0 t + (at 2) : 2.
  • V = V 0 + at.

В этой формуле индексами «ноль» обозначены начальные значения величин.

Теорема о величинах поступательного движения

Ее формулировка звучит так: траектория, скорость и ускорение всех точек тела одинаковы при его поступательном движении.

Для ее доказательства нужно записать формулу сложения векторов перемещения и вектора, соединяющего две произвольные точки. Траектории всех точек получаются благодаря их переносу вдоль второго вектора. А он не изменяет своего направления и величины с течением времени. Поэтому можно утверждать, что все точки тела движутся по одинаковым траекториям.

Если взять производную по времени, то получится значение скорости. Причем выражение упрощается до той степени, что скорости двух точек равны.
Поле второй производной по времени получается результат с равенством ускорений двух точек.

Поступательным называется такое движение твердого тела, при котором любая прямая, неизменно связанная с этим телом, остается параллельной своему начальному положению.

Теорема. При поступательном движении твердого тела все его точки описывают одинаковые траектории и в каждый данный момент имеют равные по модулю и направлению скорости и ускорения.

Доказательство. Проведем через две точки и, поступательно движущегося тела отрезок
и рассмотрим движение этого отрезка в положении
. При этом точкаописывает траекторию
, а точка– траекторию
(рис. 56).

Учитывая, что отрезок
перемещается параллельно самому себе, и длина его не меняется, можно установить, что траектории точекибудут одинаковы. Значит, первая часть теоремы доказана. Будем определять положение точекивекторным способом относительно неподвижного начала координат. При этом эти радиусы – вектора находятся в зависимости
. Так как. ни длина, ни направление отрезка
не меняется при движении тела, то вектор

. Переходим к определению скоростей по зависимости (24):

, получаем
.

Переходим к определению ускорений по зависимости (26):

, получаем
.

Из доказанной теоремы следует, что поступательное движение тела будет вполне определено, если известно движение только одной какой- нибудь точки. Поэтому изучение поступательного движения твердого тела сводится к изучению движения одной его точки, т.е. к задаче кинематики точки.

Тема 11. Вращательное движение твердого тела

Вращательным называется такое движение твердого тела, при котором две его точки остаются неподвижными за все время движения. При этом прямая, проходящая через эти две неподвижные точки, называется осью вращения .

Каждая точка тела, не лежащая на оси вращения, описывает при таком движении окружность, плоскость которой перпендикулярна к оси вращения, и центр ее лежит на этой оси.

Проводим через ось вращения неподвижную плоскость I и подвижную плоскость II, неизменно связанную с телом и вращающуюся вместе с ним (рис. 57). Положение плоскости II, а соответственно и всего тела, по отношению к плоскости I в пространстве, вполне определятся углом . При вращении тела вокруг осиэтот угол является непрерывной и однозначной функцией времени. Следовательно, зная закон изменения этого угла с течением времени, мы сможем определить положение тела в пространстве:

- закон вращательного движения тела . (43)

При этом будем полагать, что угол отсчитывается от неподвижной плоскости в направлении обратном движению часовой стрелки, если смотреть с положительного конца оси. Так как положение тела, вращающегося вокруг неподвижной оси, определяется одним параметром, то говорят, что такое тело имеет одну степень свободы.

Угловая скорость

Изменение угла поворота тела с течением времени называется угловой скоростью тела и обозначается
(омега):

.(44)

Угловая скорость так же, как и линейная скорость, есть величина векторная, и этот вектор строят на оси вращения тела. Он направляется вдоль оси вращения в ту сторону, чтобы, смотря с его конца на его начало, видеть вращение тела против хода часовой стрелки (рис. 58). Модуль этого вектора определяется зависимостью (44). Точку приложенияна оси можно выбирать произвольно, так как вектор можно переносить вдоль линии его действия. Если обозначить орт-вектор оси вращения через, то получим векторное выражение угловой скорости:

. (45)

Угловое ускорение

Быстрота изменения угловой скорости тела с течением времени называется угловым ускорением тела и обозначается (эпсилон):

. (46)

Угловое ускорение есть величина векторная, и этот вектор строят на оси вращения тела. Он направляется вдоль оси вращения в ту сторону, чтобы, смотря с его конца на его начало, видеть направление вращение эпсилон против хода часовой стрелки (рис. 58). Модуль этого вектора определяется зависимостью (46). Точку приложенияна оси можно выбирать произвольно, так как вектор можно переносить вдоль линии его действия.

Если обозначить орт-вектор оси вращения через , то получим векторное выражение углового ускорения:

. (47)

Если угловые скорость и ускорения одного знака, то тело вращается ускоренно , а если разного – замедленно . Пример замедленного вращения показан на рис. 58.

Рассмотрим частные случаи вращательного движения.

1. Равномерное вращение:

,
.

,
,
,

,
. (48)

2. Равнопеременное вращение:

.

,
,
,
,
,
,
,
,


,
,
.(49)

Связь линейных и угловых параметров

Рассмотрим движение произвольной точки
вращающегося тела. При этом траектория движения точки будет окружность, радиуса
, расположенная в плоскости перпендикулярной оси вращения (рис. 59,а ).

Допустим, что в момент времени точка находится в положении
. Предположим, что тело вращается в положительном направлении, т.е. в направлении возрастания угла . В момент времени
точка займет положение
. Обозначим дугу
. Следовательно, за промежуток времени
точка прошла путь
. Ее средняя скорость , а при
,
. Но, из рис. 59,б , видно, что
. Тогда. Окончательно получаем

. (50)

Здесь - линейная скорость точки
. Как было получено ранее, эта скорость направлена по касательной к траектории в данной точке, т.е. по касательной к окружности.

Таким образом, модуль линейной (окружной) скорости точки вращающегося тела равен произведению абсолютного значения угловой скорости на расстояние от этой точки до оси вращения.

Теперь свяжем линейные составляющие ускорения точки с угловыми параметрами.

,
. (51)

Модуль касательного ускорения точки твердого тела, вращающегося вокруг неподвижной оси, равен произведению углового ускорения тела на расстояние от этой точки до оси вращения.

,
. (52)

Модуль нормального ускорения точки твердого тела, вращающегося вокруг неподвижной оси, равен произведению квадрата угловой скорости тела на расстояние от этой точки до оси вращения.

Тогда выражение для полного ускорения точки принимает вид

. (53)

Направления векторов ,,показаны на рисунке 59,в .

Плоским движением твердого тела называется такое движение, при котором все точки тела перемещаются параллельно некоторой неподвижной плоскости. Примеры такого движения:

Движение любого тела, основание которого скользит по данной неподвижной плоскости;

Качение колеса по прямолинейному участку пути (рельсу).

Получим уравнения плоского движения. Для этого рассмотрим плоскую фигуру, движущуюся в плоскости листа (рис. 60). Отнесем это движение к неподвижной системе координат
, а с самой фигурой свяжем подвижную систему координат
, которая перемещается вместе с ней.

Очевидно, что положение движущейся фигуры на неподвижной плоскости определяется положением подвижных осей
относительно неподвижных осей
. Такое положение определяется положением подвижного начала координат, т.е. координатами,и углом поворота, подвижной системы координат, относительно неподвижной, который будем отсчитывать от осив направлении обратном движению часовой стрелки.

Следовательно, движение плоской фигуры в ее плоскости будет вполне определено, если для каждого момента времени будут известны значения ,,, т.е. уравнения вида:

,
,
. (54)

Уравнения (54) являются уравнениями плоского движения твердого тела, так как если эти функции известны, то для каждого момента времени можно из этих уравнений найти соответственно ,,, т.е. определить положение движущейся фигуры в данный момент времени.

Рассмотрим частные случаи:

1.

, тогда движение тела будет поступательным, так как подвижные оси перемещаются, оставаясь параллельными своему начальному положению.

2.

,

. При таком движении меняется только угол поворота, т.е. тело будет вращаться относительно оси, проходящей перпендикулярно плоскости рисунка через точку.

Разложение движения плоской фигуры на поступательное и вращательное

Рассмотрим два последовательных положения и
, которые занимает тело в моменты времении
(рис. 61). Тело из положенияв положение
можно перенести следующим образом. Перенесем сначала телопоступательно . При этом отрезок
переместится параллельно самому себе в положение
, а затемповернем тело вокруг точки (полюса) на угол
до совпадения точеки.

Следовательно, любое плоское движение можно представить как сумму поступательного движения вместе с выбранным полюсом и вращательного движения , относительно данного полюса.

Рассмотрим методы, с помощью которых можно определить скорости точек тела, совершающего плоское движение.

1. Метод полюса. Этот метод основывается на полученном разложении плоского движения на поступательное и вращательное. Скорость любой точки плоской фигуры можно представить в виде двух составляющих: поступательной, со скоростью равной скорости произвольно выбранной точки – полюса , и вращательной вокруг этого полюса.

Рассмотрим плоское тело (рис. 62). Уравнения движения имеют вид:
,
,
.

Определяем из этих уравнений скорость точки (как при координатном способе задания)

,
,
.

Таким образом, скорость точки - величина известная. Принимаем эту точку за полюс и определим скорость произвольной точки
тела.

Скорость
будет складываться из поступательной составляющей, при движении вместе с точкой, и вращательной
, при вращении точки
относительно точки. Скорость точкиперенесем в точку
параллельно самой себе, так как при поступательном движении скорости всех точек равны как по величине, так и по направлению. Скорость
определится по зависимости (50)
, и направлен этот вектор перпендикулярно радиусу
по направлению вращения
. Вектор
будет направлен по диагонали параллелограмма, построенного на векторахи
, а его модуль определиться зависимостью:

, .(55)

2. Теорема о проекциях скоростей двух точек тела.

Проекции скоростей двух точек твердого тела на прямую, соединяющую эти точки, равны между собой.

Рассмотрим две точки тела и(рис. 63). Принимая точкуза полюс, определим направлениепо зависимости (55):
. Проектируем это векторное равенство на линию
и, учитывая, что
перпендикулярно
, получаем

3. Мгновенный центр скоростей.

Мгновенным центром скоростей (МЦС) называется точка, скорость которой в данный момент времени равна нулю.

Покажем, что если тело движется не поступательно, то такая точка в каждый момент времени существует и притом единственная. Пусть в момент времени точкиитела, лежащие в сечении, имеют скоростии, не параллельные друг другу (рис. 64). Тогда точка
, лежащая на пересечении перпендикуляров к векторами, и будет МЦС, так как
.

Действительно, если допустить, что
, то по теореме (56), вектор
должен быть одновременно перпендикулярен
и
, что невозможно. Из этой же теоремы видно, что никакая другая точка сеченияв этот момент времени не может иметь скорость равную нулю.

Применяя метод полюса
- полюс, определим скорость точки(55):, т.к.
,
. (57)

Аналогичный результат можно получить для любой другой точки тела. Следовательно, скорость любой точки тела равна ее вращательной скорости относительно МЦС:

,
,
, т.е. скорости точек тела пропорциональны их расстояниям до МЦС.

Из рассмотренных трех способов определения скоростей точек плоской фигуры видно, что предпочтительным является МЦС, так как здесь скорость сразу определяется как по модулю, так и по направлению одной составляющей. Однако этот способ можно применять, если нам известен или мы можем определить для тела положение МЦС.

Определение положения МЦС

1. Если нам известны для данного положения тела направления скоростей двух точек тела, то МЦС будет точкой пересечения перпендикуляров к этим векторам скоростей.

2. Скорости двух точек тела антипараллельны (рис. 65,а ). В этом случае перпендикуляр к скоростям будет общим, т.е. МЦС находится где-то на этом перпендикуляре. Чтобы определить положение МЦС, надо соединить концы векторов скоростей. Точка пересечения этой линии с перпендикуляром будет искомым МЦС. При таком случае МЦС находится между этими двумя точками.

3. Скорости двух точек тела параллельны, но не равны по величине (рис.65,б ). Процедура получения МЦС аналогична описанной в пункте 2.

г) Скорости двух точек равны как по величине, так и по направлению (рис.65,в ). Получаем случай мгновенно поступательного движения, при котором скорости всех точек тела равны. Следовательно, угловая скорость тела в данном положении равна нулю:

4. Определим МЦС для колеса, катящегося без скольжения по неподвижной поверхности (рис. 65,г ). Так как движение происходит без скольжения, то в точке контакта колеса с поверхностью скорость будет одинакова и равна нулю, так как поверхность неподвижна. Следовательно, точка контакта колеса с неподвижной поверхностью будет являться МЦС.

Определение ускорений точек плоской фигуры

При определении ускорений точек плоской фигуры прослеживается аналогия с методами определения скоростей.

1. Метод полюса. Так же, как и при определении скоростей, принимаем за полюс произвольную точку тела, ускорение которой нам известно, или мы можем его определить. Тогда ускорение любой точки плоской фигуры равно сумме ускорений полюса и ускорения во вращательном движении вокруг этого полюса:

При этом составляющая
определяет ускорение точкипри ее вращении вокруг полюса. При вращении траектория движения точки будет криволинейной, а значит
(рис. 66).

Тогда зависимость (58) принимает вид
. (59)

Учитывая зависимости (51) и (52), получаем
,
.

2. Мгновенный центр ускорений.

Мгновенным центром ускорений (МЦУ) называется точка, ускорение которой в данный момент времени равно нулю.

Покажем, что в каждый данный момент времени такая точка существует. Принимаем за полюс точку , ускорение которой
нам известно. Находим угол, лежащий в пределах
, и удовлетворяющий условию
. Если
, то
и наоборот, т.е. уголоткладывается по направлению. Отложим от точкипод угломк вектору
отрезок
(рис. 67). Полученная такими построениями точка
будет МЦУ.

Действительно, ускорение точки
равно сумме ускорений
полюсаи ускорения
во вращательном движении вокруг полюса:
.

,
. Тогда
. С другой стороны, ускорение
образует с направлением отрезка
угол
, который удовлетворяет условию
. Знак минус поставлен перед тангенсом угла, так как вращение
относительно полюсапротив хода часовой стрелки, а угол
откладывается по ходу часовой стрелке. Тогда
.

Следовательно,
и тогда
.

Частные случаи определения МЦУ

1.
. Тогда
, и, следовательно, МЦУ не существует. В этом случае тело движется поступательно, т.е. скорости и ускорения всех точек тела равны.

2.
. Тогда
,
. Значит, МЦУ лежит на пересечении линий действия ускорений точек тела (рис.68,а ).

3.
. Тогда,
,
. Значит, МЦУ лежит на пересечении перпендикуляров к ускорениям точек тела (рис.68,б ).

4.
. Тогда
,

. Значит, МЦУ лежит на пересечении лучей, проведенных к ускорениям точек тела под углом(рис.68,в ).

Из рассмотренных частных случаев можно сделать вывод: если принять точку
за полюс, то ускорение любой точки плоской фигуры определится ускорением во вращательном движении вокруг МЦУ:

. (60)

Сложным движением точки называется такое движение, при котором точка одновременно участвует в двух или более движениях. При таком движении положение точки определяют относительно подвижной и относительно неподвижной систем отсчета.

Движение точки относительно подвижной системы отсчета называется относительным движением точки . Параметры относительного движения условимся обозначать
.

Движение той точки подвижной системы отсчета, с которой в данный момент совпадает движущаяся точка относительно неподвижной системы отсчета, называется переносным движением точки . Параметры переносного движения условимся обозначать
.

Движение точки относительно неподвижной системы отсчета называется абсолютным (сложным) движением точки . Параметры абсолютного движения условимся обозначать
.

В качестве примера сложного движения, можно рассмотреть движение человека в движущемся транспорте (трамвай). В этом случае движение человека отнесено к подвижной системе координат – трамваю и к неподвижной системе координат – земле (дороге). Тогда исходя из данных выше определений, движение человека относительно трамвая – относительно, движение вместе с трамваем относительно земли – переносное, а движение человека относительно земли – абсолютное.

Будем определять положение точки
радиусами – векторами относительно подвижной
и неподвижной
систем координат (рис. 69). Введем обозначения:- радиус-вектор, определяющий положение точки
относительно подвижной системы координат
,
;- радиус-вектор, определяющий положение начала подвижной системы координат (точки) (точки);- радиус – вектор, определяющий положение точки
относительно неподвижной системы координат
;
,.

Получим условия (ограничения), соответствующие относительному, переносному и абсолютному движениям.

1. При рассмотрении относительного движения будем считать, что точка
перемещается относительно подвижной системы координат
, а сама подвижная система координат
относительно неподвижной системы координат
не перемещается.

Тогда координаты точки
будут меняться в относительном движении, а орт-вектора подвижной системы координат изменяться по направлению не будут:


,

,

.

2. При рассмотрении переносного движения, будем считать, что координаты точки
по отношению к подвижной системе координат зафиксированы, и точка перемещается вместе с подвижной системой координат
относительно неподвижной
:


,

,

,.

3. При абсолютном движении точка движется и относительно
и вместе с системой координат
относительно неподвижной
:

Тогда выражения для скоростей, с учетом (27), имеют вид

,
,

Сравнивая эти зависимости, получаем выражение для абсолютной скорости:
. (61)

Получили теорему о сложении скоростей точки в сложном движении: абсолютная скорость точки равна геометрической сумме относительной и переносной составляющих скорости.

Используя зависимость (31), получаем выражения для ускорений:

,

Сравнивая эти зависимости, получаем выражение для абсолютного ускорения:
.

Получили, что абсолютное ускорение точки не равно геометрической сумме относительной и переносной составляющих ускорений. Определим составляющую абсолютного ускорения, стоящую в скобках, для частных случаев.

1. Переносное движение точки поступательное
. В этом случае оси подвижной системы координат
перемещаются все время параллельно самим себе, тогда.

,

,

,
,
,
, тогда
. Окончательно получаем

. (62)

Если переносное движение точки поступательное, то абсолютное ускорение точки равно геометрической сумме относительной и переносной составляющей ускорения.

2. Переносное движение точки непоступательное. Значит, в этом случае подвижная система координат
вращается вокруг мгновенной оси вращения с угловой скоростью(рис. 70). Обозначим точку на конце векторачерез. Тогда, используя векторный способ задания (15), получаем вектор скорости этой точки
.

С другой стороны,
. Приравнивая правые части этих векторных равенств, получаем:
. Поступая аналогично, для остальных орт векторов, получаем:
,
.

В общем случае абсолютное ускорение точки равно геометрической сумме относительной и переносной составляющей ускорения плюс удвоенное векторное произведение вектора угловой скорости переносного движения на вектор линейной скорости относительного движения.

Удвоенное векторное произведение вектора угловой скорости переносного движения на вектор линейной скорости относительного движения называется ускорением Кориолиса и обозначается

. (64)

Ускорение Кориолиса характеризует изменение относительной скорости в переносном движении и изменение переносной скорости в относительном движении.

Направляется
по правилу векторного произведения. Вектор ускорения Кориолиса всегда направлен перпендикулярно плоскости, которую образуют вектораи, таким образом, чтобы, смотря с конца вектора
, видеть поворотк, через наименьший угол, против хода часовой стрелки.

Модуль ускорения Кориолиса равен.

Поступательное движение

Рис 1.Поступательное движение тела на плоскости слева-направо, с произвольно выделенным в нём отрезком AB . Вначале прямолинейное , затем - криволинейное, переходящее во вращение каждой точки вокруг своего центра с равными для данного момента угловыми скоростями и равными значениями радиуса поворота. Точки O - мгновенные центры поворота вправо. R - их равные для каждого конца отрезка, но различные для разных моментов времени мгновенные радиусы поворота.

Поступательное движение - это механическое движение системы точек (тела), при котором любой отрезок прямой , связанный с движущимся телом , форма и размеры которого во время движения не меняются, остается параллельным своему положению в любой предыдущий момент времени.

Приведённая иллюстрация показывает, что, в отличие от распространённого утверждения . поступательное движение не является противоположностью движению вращательному, а в общем случае может рассматриваться как совокупность поворотов - не закончившихся вращений. При этом подразумевается, что прямолинейное движение есть поворот вокруг бесконечно удалённого от тела центра поворота.

В общем случае поступательное движение происходит в трёхмерном пространстве, но его основная особенность - сохранение параллельности любого отрезка самому себе, остаётся в силе.

Математически поступательное движение по своему конечному результату эквивалентно параллельному переносу .Однако, рассматриваемое как физический процесс оно представляет собой в трёхмерном пространстве вариант винтового движения (См. Рис. 2)

Примеры поступательного движения

Поступательно движется, например, кабина лифта . Также, в первом приближении, поступательное движение совершает кабина колеса обозрения . Однако, строго говоря, движение кабины колеса обозрения нельзя считать поступательным.

Одной из важнейших характеристик движения точки является её траектория , в общем случае представляющая собой пространственную кривую, которую можно представить в виде сопряжённых дуг различного радиуса, исходящего каждый из своего центра, положение которого может меняться во времени. В пределе и прямая может рассматриваться как дуга, радиус которой равен бесконечности .

Рис.2 Пример Трёхмерного поступательного движения тела

В таком случае оказывается, что при поступательном движении в каждый заданный момент времени любая точка тела совершает поворот вокруг своего мгновенного центра поворота, причём длина радиуса в данный момент одинакова для всех точек тела. Одинаковы по величине и направлению и векторы скорости точек тела, а также испытываемые ими ускорения.

При решении задач теоретической механики бывает удобно рассматривать движение тела как сложение движения центра масс тела и вращательного движения самого тела вокруг центра масс (это обстоятельство принято во внимание при формулировке теоремы Кёнига).

Примеры устройств

Торговые весы, чашки которых движутся поступательно, но не прямолинейно

Принцип поступательного движения реализован в чертёжном приборе - пантографе , ведущее и ведомое плечо которого всегда остаются параллельными, то есть движутся поступательно. При этом любая точка на движущихся частях совершает в плоскости заданные движения, каждая вокруг своего мгновенного центра вращения с одинаковой для всех движущихся точек прибора угловой скоростью .

Существенно, что ведущее и ведомое плечо прибора, хотя и движущиеся согласно, представляют собой два разных тела. Поэтому радиусы кривизны , по которым движутся заданные точки на ведущем и ведомом плече могут быть сделаны неодинаковыми, и именно в этом и заключается смысл использования прибора, позволяющего воспроизводить любую кривую на плоскости в масштабе , определяемым отношением длин плеч.

По сути дела пантограф обеспечивает синхронное поступательное движение системы двух тел: «читающего» и «пишущего», движение каждого из которых иллюстрируется приведённым выше чертежом.

См. также

  • Прямолинейное движение точки
  • Центростремительные и центробежные силы

Примечания

Литература

  • Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М.: Наука, 1989
  • С. Э. Хайкин. Силы инерции и невесомость. М.: «Наука», 1967 г. Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова.
  • Фриш С. А. и Тиморева А. В. Курс общей физики, Учебник для физико-математических и физико-технических факультетов государственных университетов, Том I. М.: ГИТТЛ, 1957

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :
  • Миранда, Эдисон
  • Зубков, Валентин Иванович

Смотреть что такое "Поступательное движение" в других словарях:

    Поступательное движение - Поступательное движение. Перемещение отрезка прямой АВ происходит параллельно самому себе. ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ, перемещение тела, при котором любая прямая, проведенная в теле, перемещается параллельно самой себе. При поступательном движении… … Иллюстрированный энциклопедический словарь

    ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ - движение тв. тела, при к ром прямая, соединяющая две любые точки тела, перемещается, оставаясь параллельной своему начальному направлению. При П. д. все точки тела описывают одинаковые траектории и имеют в каждый момент времени одинаковые по… … Физическая энциклопедия

    поступательное движение - продвижение, подвижка, шаг вперед, лед тронулся, совершенствование, рост, сдвиг, шаг, движение вперед, прогресс, развитие Словарь русских синонимов. поступательное движение сущ., кол во синонимов: 11 движение вперед … Словарь синонимов

    поступательное движение - твёрдого тела; поступательное движение Движение тела, при котором прямая, соединяющая две любые точки этого тела, перемещается, оставаясь параллельной своему начальному направлению … Политехнический терминологический толковый словарь

    ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ - движение вперед. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 … Словарь иностранных слов русского языка

    ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ - перемещение тела, при котором любая прямая, проведенная в теле, перемещается параллельно самой себе. При поступательном движении все точки тела описывают одинаковые траектории и имеют в каждый момент времени одинаковые скорости и ускорения … Большой Энциклопедический словарь

    поступательное движение - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN advancetransiational advanceheadwayforward motion … Справочник технического переводчика

    поступательное движение - перемещение тела, при котором любая прямая (например, АВ на рис.), проведённая в теле, перемещается параллельно самой себе. При поступательном движении все точки тела описывают одинаковые траектории и имеют в каждый момент времени одинаковые… … Энциклопедический словарь

    ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ - перемещение тела, при к ром любая прямая (напр., АВ на рис.), проведённая в теле, перемещается параллельно самой себе. При П. д. все точки тела описывают одинаковые траектории и имеют в каждый момент времени одинаковые скорости и ускорения … Естествознание. Энциклопедический словарь

    поступательное движение - slenkamasis judesys statusas T sritis automatika atitikmenys: angl. traslational motion; traslational movement vok. fortschreitende Bewegung, f; Schiebung, f rus. поступательное движение, n pranc. mouvement de translation, m … Automatikos terminų žodynas

Книги

  • Поступательное движение в Среднюю Азию в торговом и дипломатически-военном отношениях. Дополнительный материал для истории Хивинского похода 1873 г. , Лобысевич Ф.И.. Книга представляет собой репринтное издание 1900 года. Несмотря на то, что была проведена серьезная работа по восстановлению первоначального качества издания, на некоторых страницах могут…

Движение твердого тела разделяют на виды:

  • поступательное;
  • вращательное по неподвижной оси;
  • плоское;
  • вращательное вокруг неподвижной точки;
  • свободное.

Первые два из них – простейшие, а остальные представляют как комбинацию основных движений.

Определение 1

Поступательным называют движение твердого тела, при котором любая прямая, проведенная в нем, двигается, оставаясь параллельной своему начальному направлению.

Прямолинейное движение является поступательным, но не всякое поступательное будет прямолинейным. При наличии поступательного движения путь тела представляют в виде кривых линий.

Рисунок 1 . Поступательное криволинейное движение кабин колеса обзора

Теорема 1

Свойства поступательного движения определяются теоремой: при поступательном движении все точки тела описывают одинаковые траектории и в каждый момент времени обладают одинаковыми по модулю и направлению значениями скорости и ускорения.

Следовательно, поступательное движение твердого тела определено движением любой его точки. Это сводится к задаче кинематики точки.

Определение 2

Если имеется поступательное движение, то общая скорость для всех точек тела υ → называется скоростью поступательного движения , а ускорение a → - ускорением поступательного движения . Изображение векторов υ → и a → принято указывать приложенными в любой точке тела.

Понятие о скорости и ускорении тела имеют смысл только при наличии поступательного движения. В других случаях точки тела характеризуются разными скоростями и ускорениями.

Определение 3

Вращательное движение абсолютно твердого тела вокруг неподвижной оси – это движение всех точек тела, находящихся в плоскостях, перпендикулярных неподвижной прямой, называемой осью вращения, и описывание окружностей, центры которых располагаются на этой оси.

Чтобы определить положение вращающегося тела, необходимо начертить ось вращения, вдоль которой направляется ось A z , полуплоскость – неподвижную, проходящую через тело и движущуюся с ним, как показано на рисунке 2 .

Рисунок 2 . Угол поворота тела

Положение тела в любой момент времени будет характеризоваться соответствующим знаком перед углом φ между полуплоскостями, который получил название угол поворота тела. При его откладывании, начиная от неподвижной плоскости (направление против хода часовой стрелки), угол принимает положительное значение, против плоскости – отрицательное. Измерение угла производится в радианах. Для определения положения тела в любой момент времени следует учитывать зависимость угла φ от t , то есть φ = f (t) . Уравнение является законом вращательного движения твердого тела вокруг неподвижной оси.

При наличии такого вращения значения углов поворота радиус-вектора различных точек тела будут аналогичны.

Вращательное движение твердого тела характеризуется угловой скоростью ω и угловым ускорением ε .

Уравнения вращательного движения получают из уравнений поступательного, используя замены перемещения S на угловое перемещение φ , скорость υ на угловую скорость ω , а ускорение a на угловое ε .

Вращательное и поступательное движение. Формулы

Задачи на вращательное движение

Пример 1

Дана материальная точка, которая движется прямолинейно соответственно уравнению s = t 4 + 2 t 2 + 5 . Вычислить мгновенную скорость и ускорение точки в конце второй секунды после начала движения, среднюю скорость и пройденный за этот промежуток времени путь.

Дано: s = t 4 + 2 t 2 + 5 , t = 2 с.

Найти: s ; υ ; υ ; α .

Решение

s = 2 4 + 2 · 2 2 + 5 = 29 м.

υ = d s d t = 4 t 3 + 4 t = 4 · 2 3 + 4 · 2 = 37 м / с.

υ = ∆ s ∆ t = 29 2 = 14 , 5 м / с.

a = d υ d t = 12 t 2 + 4 = 12 · 2 2 + 4 = 52 м / с 2 .

Ответ: s = 29 м; υ = 37 м / с; υ = 14 , 5 м / с; α = 52 м / с 2

Пример 2

Задано тело, вращающееся вокруг неподвижной оси по уравнению φ = t 4 + 2 t 2 + 5 . Произвести вычисление мгновенной угловой скорости, углового ускорения тела в конце 2 секунды после начала движения, средней угловой скорости и угла поворота за данный промежуток времени.

Дано: φ = t 4 + 2 t 2 + 5 , t = 2 с.

Найти: φ ; ω ; ω ; ε .

Решение

φ = 2 4 + 2 · 2 2 + 5 = 29 р а д.

ω = d φ d t = 4 t 3 + 4 t = 4 · 2 3 + 4 · 2 = 37 р а д / с.

ω = ∆ φ ∆ t = 29 2 = 14 , 5 р а д / с.

ε = d ω d t = 12 2 + 4 = 12 · 2 2 + 4 = 52 р а д / с 2 .

Ответ: φ = 29 р а д; ω = 37 р а д / с; ω = 14 , 5 р а д / с; ε = 52 р а д / с 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.